New Method of Modeling Infrared Spectra of Non-cubic Single-Phase Polycrystalline Materials with Random Orientation

$29.00 plus tax (Refund Policy)

Buy Article:


A new approach has been used to model optical properties of non-cubic single-phase polycrystalline materials with random orientation and crystallites small compared to the resolution limit of light. This method has been applied to fresnoite (Ba2TiSi2O8) and proved to provide widely adequate results to effective medium approximation (EMA) and an excellent correspondence between simulated and measured spectra. In contrast to EMA, the new theory predicts that the deviation between damping constants of polycrystalline and single crystal fresnoite can be adjusted by one common factor for all damping constants. Based on EMA and the new model, much smaller damping constants have been determined for polycrystalline fresnoite compared to conventional dispersion analysis; the latter is able to provide a relevant dielectric function, but seems to be of little reliability concerning the determination of meaningful oscillator parameters due to the implicit assumption of an arithmetic average of the principal dielectric functions. This approximation, which can be derived in a similar form from EMA and is of widespread use, is shown to be inferior to an approximation based on the arithmetic average of the principal refractive indices.


Document Type: Research Article


Publication date: September 1, 2002

More about this publication?
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more