Study of Dose–Envelope Reactions in Metal Halide Discharge Lamps Using Raman Microscopy

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Raman microscopy has been used to investigate the reactions between the chemical dosants in scandium metal halide discharge lamps and their silica lamp envelopes; such lamps are typically dosed with Hg, NaI, ScI3, and sometimes, additionally, excess Sc metal. Raman measurements were made both on operated lamps and dosed silica ampoules that had been furnace heat-treated. The ampoules mimic closely the dose-envelope interactions of lamps in a convenient manner while avoiding the obscuring and complicating effects in whole-lamp studies resulting from the reactions and mobility of electrode materials. In situ Raman analyses of deposits in the envelopes and ampoules, supported by an extensive database of the Raman spectra of lamp materials, and ex situ X-ray diffraction (XRD) analyses of refractory deposits to confirm independently the Raman assignments, have demonstrated that: (1) Sc metal reacts with envelope silica to produce Sc2O3 and elemental Si; (2) Sc metal in the presence of ScI3 reacts with the envelope silica to produce Sc2Si2O7; and (3) Sc metal reacts with envelope silica in the presence of NaI alone to produce Sc2O3 and not Sc2Si2O7. The results confirm and extend previous studies and demonstrate the value of Raman microscopy as a nondestructive investigative tool for lamp chemistry.

Keywords: DISCHARGE LAMPS; METAL HALIDES; RAMAN MICROSCOPY; SILICA; SILICON; X-RAY DIFFRACTION; XRD

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/000370202760249747

Publication date: August 1, 2002

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more