Skip to main content

Spectral Differences between Stratum Corneum and Sebaceous Molecular Components in the Mid-IR

Buy Article:

$29.00 plus tax (Refund Policy)

Abstract:

Despite a number of studies on the composition of the lipids of stratum corneum (SC) and sebum, questions remain about the detailed molecular arrangement of the two superficial components of human skin. The investigation of the molecular components of SC in vivo is important to understand the function of what was once thought to be a "dead" epithelium. We have investigated the molecular composition of SC and sebum in vivo, in the mid-infrared, with fiber-based attenuated total reflection Fourier transform infrared spectroscopy (ATR/FT-IR). This technique combines the sensitivity of infrared spectroscopy in detecting molecular composition and conformational order with the capability of probing surfaces to a depth of less than 1 μm. ATR/FT-IR is therefore particularly useful for the investigation of interfaces such as SC and the sebaceous layers. We found that with the use of ATR/FT-IR one can distinguish between the contribution of the molecular components of sebum and SC. The presence of spectral "signatures" of the lipids of sebum allowed us to improve the interpretation of some infrared bands of sebaceous origin as well as of SC in vivo. We also found that ATR/FT-IR can be used to separate the spectral contributions of sebum and SC, and as a method to study the early recovery of superficial lipids after the removal of sebum. Following calibration, a method can be developed to quantify the relative amount of fatty acid in sebum with the use of ATR/FT-IR. We observed that the sebaceous fatty acids that reach the surface of the skin recover at a slower rate than other sebaceous lipids. Our investigation shows that fiber-based ATR/FT-IR is a promising spectroscopic approach to the study of epithelial surfaces and surface contaminants in vivo.

Keywords: ATTENUATED; CORNEUM; FOURIER; FT-IR; INFRARED; REFLECTION; SEBUM; STRATUM; TOTAL; TRANSFORM

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/0003702001950742

Publication date: August 1, 2000

More about this publication?
sas/sas/2000/00000054/00000008/art00011
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more