Characterization of Tantalum Films on Analytical Surfaces: Insights into Sputtering of Nonconductors in a Direct-Current Glow Discharge Using Secondary Cathodes

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

We performed glow discharge mass spectrometry (GDMS) analyses on several nonconducting ceramic materials: a glass microscope slide, Nd-doped yttrium aluminum garnet (Nd:YAG), potassium titanyl phosphate (KTP), and several National Institute of Standards and Technology (NIST) Standard Reference Materials (e.g., Trace Elements in Glass SRM 610 and SRM 612). The sputtering of the nonconductor in the GD source results in the formation of a circular sputter crater whose surface profile varies with changing conditions in the GD cell. Following GD analysis, examination of the sample surfaces within, and adjacent to, the sputter crater by micro-X-ray fluorescence (MXRF) and scanning electron microscopy (SEM) indicated that the sputter-deposited Ta film is nonuniform. In several samples, a sharp discontinuity is observable in both Ta concentration and average Z-number approximately 0.5 mm from the crater perimeter. This discontinuity probably corresponds to the physical contact between the Ta cathode and the nonconducting sample beneath. Rutherford backscattering spectrometry (RBS) was then used to characterize Ta film thickness for each of the materials. The data presented here indicate that both crater shape and film thickness are dependent on GD sputtering parameters and on the nature of the material being sputtered.
More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more