Skip to main content

Single-Molecule Detection in the Near-IR Using Continuous-Wave Diode Laser Excitation with an Avalanche Photon Detector

Buy Article:

$29.00 plus tax (Refund Policy)

Abstract:

While single-molecule detection in flowing sample streams has been reported by a number of groups, the instrumentation can be somewhat prohibitive for many applications due to the complexity and extensive expertise required to operate such a device. In this paper we report on the construction of a single-molecule detection device that is rugged, compact, inexpensive, and easily operated by individuals not well trained in optics and laser operations. The singlemolecule detection apparatus consists of a semiconductor diode laser operating in a continuous-wave (CW) mode and a single photon avalanche diode transducer for converting the detected photons into transistor-transistor logic (TTL) pulses for displaying the data. In addition, the sampling volume is produced by a single-component lens, to create a volume on the order of 1 pL, allowing the sampling of microliter volumes of material on reasonable time scales. The device is targeted for operation in the near-IR region (700-1000 nm), where matrix interferences are minimal. Our data will demonstrate the detection of single molecules for the near-IR dyes IR132 and IR-125, in methanol solvents in flowing sample streams at sampling rates of 100-250 samples/s. Detection efficiencies for the investigated near-IR dyes were found to be 98% for IR-132 and 50% for IR-125. Previous attempts in our laboratory to detect single molecules of IR-125 using time-gated detection were unsuccessful because of the short upper-state lifetime of this fluorophore ( tau f = 472 ps).

Keywords: NEAR-IR FLUORESCENCE SINGLE MOLECULE DETECTION DIODE LASER-INDUCED FLUORESCENCE

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/0003702981942438

Publication date: January 1, 1998

More about this publication?
sas/sas/1998/00000052/00000001/art00002
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more