Classification of Chemically Modified Celluloses Using a Near-Infrared Spectrometer and Soft Independent Modeling of Class Analogies

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

A method for classification of eleven chemically modified celluloses has been developed with the use of near-infrared (NIR) spectroscopy and soft independent modeling of class analogies (SIMCA). The sample set consisted of 440 different batches from eleven different cellulose derivatives. A full factorial design in temperature and moisture was made for one sample from each class in order to introduce climate variations in the calibration sample set. Principal components analysis (PCA) models were made for each class, and samples not present in the calibration set were classified according to the SIMCA method. Only one type II error (acceptance of an unacceptable sample) was detected in the classification of the different celluloses. The number of type I errors (rejection of an acceptable sample) ranged from 0 to 14%. Subgroups, due to different manufacturers, viscosities, particle sizes, and degrees of substitution, were detected and correctly classified. The sample presentation, focus of the instrument, number of reference measurements, depth of penetration, and selection of training set samples are discussed.

Keywords: CLASSIFICATION IDENTIFICATION NEAR-INFRARED NIR SIMCA PCA CELLULOSE

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/0003702971939640

Publication date: December 1, 1997

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more