If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Variable Selection in Multivariate Calibration of a Spectroscopic Glucose Sensor

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

A variable selection method that reduces prediction bias in partial least-squares regression models was developed and applied to nearinfrared absorbance spectra of glucose in pH buffer and cell culture medium. Comparisons between calibration and prediction capability for full spectra and reduced sets were completed. Variable selection resulted in statistically equivalent errors while reducing the number of wavelengths needed to fit the calibration data and predict concentrations from new spectra. Fewer than 25 wavelengths were selected to produce errors statistically equivalent to those yielded by the full set containing over 500 wavelengths. The algorithm correctly chose the glucose absorption peak areas as the information-carrying spectral regions.
More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more