Titanium:Sapphire Laser as an Excitation Source in Two-Photon Spectroscopy

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The passively mode-locked titanium:sapphire laser provides new opportunities for acquiring two-photon spectral data in the nearinfrared, a region not commonly accessible to synchronously pumped dye lasers. This source generates pulses with peak powers near 100 kW at average powers over 1 W and is capable of yielding two-photon signals roughly two orders of magnitude larger than is possible with synchronously pumped dye lasers. However, the multimode output of this laser exhibits significant temporal and spectral pulse profile variations as the laser wavelength is tuned. As a consequence, peak powers of the titanium:sapphire laser can vary independently from average power across the tuning range. This wavelength dependence, coupled with the quadratic dependence of the two-photon signal upon the instantaneous power of the laser, precludes simple average power correction of nonlinear spectral band shapes. Here, we investigate the key properties of the titanium:sapphire laser as an excitation source for two-photon spectroscopy. We also identify a chemical reference suitable for obtaining source-corrected excitation spectra in the near-infrared using a double-beam, ratiometric approach; this is based on a source-independent two-photon excitation spectrum for the laser dye coumarin-480 that has been obtained with a single-frequency titanium:sapphire laser. From these data, correction factors are generated for correction of multimode source data.
More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more