Self-Association of Medium-Chain Alcohols in n-Decane Solutions

$29.00 plus tax (Refund Policy)

Buy Article:


Self-association of medium-chain alcohols in n-decane solutions has been studied by infrared absorption of the fundamental OH stretching vibration. The alcohols investigated were 1-propanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-butanol, 1-pentanol, and 1-hexanol. Infrared spectra were acquired for varying alcohol molalities, the highest concentration being 0.2 mol/kg. The spectra for each alcohol were collected in a data matrix. The bilinear multicomponent data were successfully resolved into spectra and concentration profiles by a multivariate method. The result indicates that monomers dominate the spectral variance in the low-molality region, while cyclic oligomers dominate in the upper concentration range. It further indicates that minor amounts of open-chain aggregates may be present. The monomer and cyclic tetramer appear to be the dominant species, while the amount of open-chain aggregates was negligible even in the low-molality region. The equilibrium constants for the monomer-tetramer association reactions (K 1-4) were calculated by a least-squares method. The calculated values for the equilibrium constants, based on the molality, range from 138 to 106 for the linear alcohol molecules. The result shows that 1-butanol, 1-pentanol, and 1-hexanol have similar constants, while 1-propanol displays a markedly higher value. The equilibrium constants obtained for 2-methyl-1-propanol and 2-methyl-2-propanol were 77 and 39, respectively. The considerably lower values for the branched alcohol molecules indicate that steric interaction between the chain prevents self-association into larger aggregates.

Keywords: Alcohol; Chemometrics; Curve resolution; Hydrocarbon; Infrared spectroscopy; Principal component analysis; Self-association

Document Type: Research Article


Affiliations: Department of Chemistry, University of Bergen, Allegt. 41, N-5007 Bergen, Norway

Publication date: October 1, 1996

More about this publication?
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more