If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Rotational Reorientation Dynamics of Aerosol-OT Reverse Micelles Formed in Nearcritical Propane

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The rotational reorientation kinetics of two fluorescent solutes (rhodamine 6G, R6G, and rhodamine 101, R101) have been determined in sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol-OT, AOT) reverse micelles formed in liquid and nearcritical propane. We show that the amount of water loading ([water]/[AOT], R), continuous phase density, and temperature all influence the solute rotational dynamics. In all cases, the decay of anisotropy data (i.e., frequency-dependent differential polarized phase angle and polarized modulation ratio) are well-described by a bi-exponential decay law. We find that the faster rotational correlation times are similar to but slightly less than the values predicted for an individual AOT reverse micelle rotating in propane. The recovered rotational correlation times range from 200 to 500 ps depending on experimental conditions. This faster rotational process is explained in terms of lateral diffusion of the fluorophore along the water/headgroup interfacial region within the reverse micelle. The recovered values for the slower rotational correlation times range from 7 to 18 ns. These larger rotational reorientation times are assigned to varying micelle-micelle (i.e., tail-tail) interactions in the low-density, highly compressible fluid region. We also quantify the contribution of the reverse micellar "aggregate" to the total decay of anisotropy.

Keywords: Fluorescence; Lateral diffusion; Nearcritical fluids; Reverse micelles; Rotational reorientation

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/0003702963905691

Affiliations: Department of Chemistry, Natural Sciences and Mathematics Complex, State University of New York at Buffalo, Buffalo, New York 14260-3000

Publication date: June 1, 1996

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more