Skip to main content

Separation of Additive Mixture Spectra by a Self-Modeling Method

Buy Article:

$29.00 plus tax (Refund Policy)


A method for the separation of additive spectra of complex mixtures is developed on the basis of a linear algebra technique and nonlinear optimization algorithms. It is shown to be possible, under certain conditions, to uniquely separate a set of complex spectral curves consisting of the same components, but with different proportions, into the unknown spectra of the pure constituents and to give their respective relative concentrations. The method proposed is a variant of the self-modeling curve-resolution approach based on the singular value decomposition of the data matrix formed by the set of digitized spectra of mixtures. The spectra of components are calculated as linear combinations of left-side singular vectors of the data matrix provided that both individual spectra and their concentrations are nonnegative and the shapes of the spectra are as dissimilar as possible. The technique provides a unique decomposition if each fundamental spectrum has at least one wavelength with zero intensity and the other pure spectra are nonzero at this wavelength. The algorithm is evaluated on an artificial data set to clearly demonstrate the method. The approach described in this paper may be applied to any experiment whose outcome is a continuous curve y(x) that is a sum of unknown, nonnegative, linearly independent functions.

Keywords: Factor analysis; Related mixtures; Self-modeling; Spectra resolution

Document Type: Research Article


Affiliations: Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, Moscow 117333, Russia

Publication date: March 1, 1996

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more
Real Time Web Analytics