If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Laser-Induced Shock Wave Plasma in Glass and Its Application to Elemental Analysis

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The characteristics of a laser-induced shock wave plasma which was induced by focusing a laser pulse on the surface of glass samples were examined by using radiation from a XeCl excimer laser and a TEA CO2 laser under reduced pressure of around 1 Torr. It was observed that shock wave plasma could not be generated by the TEA CO2 laser on low-melting-point glass because of the lack of expulsion from the sample surface. On the other hand, with the use of an excimer laser, shock wave plasma can be generated, even in low-melting-point glasses, thus making it amenable for spectrochemical analysis. Initial quantitative analysis was performed on a number of glass samples, and a linear calibration curve with a slope of near unity was obtained at a certain pressure. Furthermore, light elements such as Li and B, which are usually difficult to observe by the X-ray fluorescence method, were also successfully detected with a very low detection limit of less than 10 ppm. Other detection limits and background equivalent concentrations of almost all elements usually contained in glass, such as Na, Mg, Al, K, Ca, Ti, Zn, Zr, and Ba, were also presented. These results showed that the detection limit is much lower than those usually required for glass analysis.

Keywords: Laser plasma; Laser-induced shock wave; Light elements analysis; Quantitative analysis in glass; Time-resolved spatial distribution

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/0003702953964949

Affiliations: 1: Spectroscopy Laboratory, Graduate Program for Opto-electronics and Laser Application, University of Indonesia, Jakarta 10430, Indonesia 2: Yamamura New Glass Research Center, Nishinomiya 663, Japan 3: Department of Physics, Faculty of Education, Fukui University, Fukui 910, Japan

Publication date: August 1, 1995

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more