Skip to main content

Matrix Isolation/Fourier Transform Infrared Spectrometry of Laser-Desorbed Species

Buy Article:

$29.00 plus tax (Refund Policy)


Initial results are presented for a novel experimental arrangement which allows the successful study of laser-desorbed neutral species under matrix isolation conditions. In the current work, a pulsed carbon dioxide laser (10.6 μm) is employed for laser desorption. With the combination of a previously described cryogenic trapping technique with coaxial matrix isolation gas (xenon or argon) introduction, laser-desorbed neutrals have been matrix isolated and their Fourier transform infrared spectra recorded. Two different cinnamic acid derivatives (p-coumaric acid and sinapinic acid) typically employed for matrix-assisted laser ionization (MALDI) mass spectrometry were utilized to demonstrate this new technique. Experimental conditions were determined for optimal matrix isolation of the laser-desorbed species. Two different desorption geometries were examined with respect to their effectiveness for matrix isolation of desorbed neutrals. A covalent dimer of p-coumaric acid produced in an external UV photoreactor and thought to be a possible photoreaction product in UV MALDI was studied by this technique. Thermal degradation of this dimer is shown to occur above threshold irradiance for laser desorption.

Keywords: Cryogenic trapping; Fourier transform infrared spectrometry; Laser desorption; MALDI; Matrix isolation

Document Type: Research Article


Affiliations: Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300

Publication date: July 1, 1995

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more