Skip to main content

Investigations of a Magnetically Enhanced Grimm-Type Glow Discharge Source

Buy Article:

$29.00 plus tax (Refund Policy)


The application of a magnetic field to the Grimm glow discharge lamp in order to enhance its sputtering rate and emission characteristics for optical emission spectrometry was investigated. A Nd-Fe-B magnet was placed behind samples of copper and Monel 400 (a Cu-Ni-Fe alloy) having thicknesses of 1.0-1.5 mm. The sputtering rates (at 1000 V in argon at 4 Torr) for copper could be increased from 100 to 200 μg/min under the influence of the magnetic field. The noise behavior of the atomic emission was found to be influenced slightly by the application of the magnetic field. For the nonresonance Cu(I) line emission at 282.4 nm, an increase in intensity occurred in accordance with the increase in sputtering rate, whereas for resonance lines [Cu(I) 324.7 nm in the case of copper samples and Cr(I) 425.7 nm for Monel 400 containing 0.06% (w:w) Cr], a drop in the atomic emission was found upon application of the magnetic field. This result is thought to be due to self-absorption, which has been shown to occur in a Grimm-type glow discharge source.

Keywords: Atomic emission spectroscopy; Glow discharge; Grimm lamp

Document Type: Research Article


Affiliations: 1: Department of Chemistry, Indiana University, Bloomington, Indiana 47405 2: Department of Chemistry, Indiana University, Bloomington, Indiana 47405; on leave from Department of Chemistry, University of Dortmund, P.O. 50 05 00, D4600 Dortmund-50, Germany

Publication date: February 1, 1995

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more