Skip to main content

Gel Permeation Chromatography/Fourier Transform Infrared Interface for Polymer Analysis

Buy Article:

$29.00 plus tax (Refund Policy)


A new solvent elimination interface capable of operating at elevated temperatures, here 145°C, has been used to collect polymer molecular weight fractions eluting from a gel permeation chromatogram and to prepare them for IR analysis. The sample is deposited continuously onto a rotating germanium disk which can subsequently be scanned with the use of GC/FT-IR software, allowing direct access to the polymer or copolymer composition as a function of molecular weight. Data are presented here for an ethylene-propylene copolymer which has a distinct bimodal molecular weight distribution. Both the concentration profile and the "composition distribution" are examined. For the polymer concentration profile, comparison is made between the chromatogram obtained with a differential refractive index (DRI) detector and the IR detector (plotting the absorbance as a function of time using Gram-Schmidt vector orthogonalization). The copolymer composition is determined from the relative absorbance of methyl and methylene groups in the CH stretching region. The results show a small change in propylene content as a function of molecular weight, and there is good agreement between composition calculated with the use of the Gram-Schmidt and point-to-point methods.

Keywords: Analytical methods; GP/FT-IR

Document Type: Research Article


Affiliations: 1: Polymer Group, Exxon Chemical Company, 1900 East Linden Avenue, Linden, New Jersey 07036 2: Lab Connections, Inc., 5 Mount Royal Avenue, Marlborough, Massachusetts 01752

Publication date: August 1, 1993

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more