Skip to main content

Near-IR Fiber-Optic Temperature Sensor

Buy Article:

$29.00 plus tax (Refund Policy)


A fiber-optic temperature sensor based on the perturbations of near-IR water bands has been developed. These fiber-optic sensors are very simple and readily fabricated. Models for expressing temperature can be developed by linear regression (LR) of the absorbance at one selected wavenumber, by multilinear regression (MLR) of the absorbances at several selected wavenumbers, or by principal component regression (PCR) using entire spectra. The standard errors of prediction for temperature are 0.53 to 1.64°C for the LR model, 0.22 to 0.85°C for the MLR model, and 0.16 to 0.32°C for the PCR model over a temperature range of 5 to 85°C. Potentially, these fiber-optic sensors can be used in the remote sensing of temperature and in hostile electrical environments.

Keywords: Fiber optics; Near-infrared; Optics; Sensors; Spectroscopic techniques; Temperature; Water spectrum

Document Type: Research Article


Affiliations: Department of Chemistry, University Rhode Island, Kingston, Rhode Island 02881

Publication date: January 1, 1993

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more