Microheterogeneity of Sodium Dodecylsulfate Micelles Probed by Frequency-Domain Fluorometry

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The microenvironment of sodium dodecylsulfate (SDS) micelles has been examined with the use of two fluorescent probes, 2-anilinonaphthalene-6-sulfonic acid (2,6-ANS) and N-phenyl-naphthylamine (1-AN). The fluorescence lifetimes are recovered from multifrequency phase and modulation data with the use of a global analysis protocol. The fluorescence decay kinetics of 2,6-ANS, which probes the outer-core region (i.e., the palisade layer) of SDS micelles, is characterized by a Lorentzian distribution. In contrast, a single discrete excited-state lifetime is observed for 1-AN, which is expected to position itself in the inner-core region of the micelle. Fluorescence lifetimes of these probes are investigated also as functions of temperature, concentration of counter ions (Na+ and Mg2+) and linear alcohols (n-BuOH, n-PeOH, n-HeOH, and n-HepOH). The collective results confirm that the outer-core region of SDS micelles is microheterogeneous and the inner core is essentially homogeneous. In addition, the lifetimes and the partitioning of the outer-core probe, 2,6-ANS, appear to be more sensitive to variations in temperature and counter ions in comparison to those of the inner-core probe, 1-AN. The microenvironment of 2,6-ANS is found to be more heterogeneous at high temperature and low salt concentrations. This observation, we propose, is a result of different degrees of water penetration in the outer-core region. In the SDS system, the effects of micelle polydispersity and compositional diversity, on the environmental microheterogeneity of the fluorescent probe, seem to be minimal in comparison to water gradient effects.

Keywords: Electrolyte and temperature effects; Lifetime distributions; Micelles; Phase and modulation fluorescence; Water gradients

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/0003702924125663

Affiliations: Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214

Publication date: February 1, 1992

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more