Skip to main content

Effects of High-Pressure Buffer Gases on Emission from Laser-Induced Plasmas

Buy Article:

$29.00 plus tax (Refund Policy)


A laser-induced plasma is used for atomization, ionization, and excitation of elements in solid samples. The analytes are placed in a variable-pressure chamber in which the surrounding gas can be modified to obtain optimum emission characteristics for a particular sample. A time-resolved system is described which can produce qualitative and semi-quantitative spectroscopic information using a single laser plasma. The effects of the plasma position relative to the sample, the chamber pressure, and the characteristics of the surrounding gases are studied. When helium was employed as the buffer gas, maximum emission intensity for the aluminum ionic transition at 281.6 nm was observed. The spectra obtained show that it is possible to obtain qualitative spectroscopic information with the formation of single plasmas by the use of time resolution. It is also demonstrated that sample excitation can be achieved directly by the plasma and indirectly by energy transfer from gases in the chamber. This method allows the use of small sample quantities with little sample preparation and is especially advantageous for solid samples which are not easily dissolved.

Keywords: Energy transfer; Laser plasma; Micro-samples

Document Type: Research Article


Affiliations: Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506

Publication date: November 1, 1991

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more
Real Time Web Analytics