Skip to main content

Diffuse Reflectance Infrared Spectroscopy Investigations of the Thermal Decomposition of Hexacarbonyl Molybdenum (0) Entrapped in Faujasite-type Zeolites

Buy Article:

$29.00 plus tax (Refund Policy)


The temperature-programmed decomposition of Mo(CO)6 entrapped in the faujasite-type zeolites Na85X, Na56Y, and Y* has been investigated with the use of in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) as a function of the Si/Al ratio of the zeolites and the Mo(CO)6 loading level. These investigations were undertaken either under dynamic vacuum or in an atmosphere of CO or He. Evidence is presented for a reversible, sequential decomposition of Mo(CO)6 to Mo(CO)3 and then a one-step irreversible decomposition of Mo(CO)3 to Mo-metal aggregates. The Mo(CO)5 and Mo(CO)4 transient species appeared the most clearly under reduced CO pressure. The Na85X zeolite with high aluminum content (Si/Al = 1.26) promotes an easy decomposition of Mo(CO)6 to Mo(CO)3 at room temperature and stabilizes this adsorbed subcarbonyl species at temperatures above 500 K. A decrease of the aluminum content (Si/Al = 2.5) in Na56Y increases the decomposition temperature of Mo(CO)6 and decreases the stability of the Mo(CO)3 species. The thermal behavior of Mo(CO)6 entrapped in dealuminated zeolite Y* (Si/Al = 75) was found to be analogous to that of Mo(CO)6 in the gas and solid phases.

Keywords: Diffuse reflectance spectroscopy; Infrared

Document Type: Research Article


Affiliations: Laboratoire de Spectrochimie Infrarouge et Raman, UPR A 2631 L CNRS, Université des Sciences et Techniques de Lille Flandres Artois, Bât. C. 5, 59655 Villeneuve d'Ascq Cedex, France

Publication date: September 1, 1991

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more