If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Effect of Sampling Rate on Fourier Transform Spectra: Oversampling is Overrated

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

In Fourier transform spectrometry, an analog time-domain signal is sampled at equally spaced intervals and subjected to a discrete Fourier transform to yield a discrete frequency-domain spectrum. Round-off errors in the sampling process can generate quantization "noise" even for a noiseless time-domain analog signal. Oversampling refers to sampling a time-domain analog signal at a rate faster than that required by the Nyquist limit. Oversampling has been applied in a wide variety of fields, including image, speech, and audio spectral analysis. It has been variously claimed that oversampling can increase the effective number of analog-to-digital converter (ADC) bits, increase signal-to-noise ratio and/or resolution, allow for improved phase and/or magnitude linearity, and reduce quantization "noise" in the bandwidth of interest. In this paper, we explain and demonstrate the effects of oversampling in Fourier transform spectrometry. For Fourier transform interferometry, magnetic resonance, or ion cyclotron resonance mass spectrometry conducted with an ADC of at least 12 bit/word, we conclude that quantization "noise" is negligible; oversampling thus has little effect on FT spectral signal-to-noise ratio, dynamic range, or resolution. Oversampling can, however, improve phase and magnitude linearity by eliminating the need for a sharp cutoff in the passband of the analog filter. Finally, autocorrelation analysis of simulated time-domain signals shows that quantization "noise" is random and essentially independent of frequency (i.e., "white") at practically attainable sampling rates.

Keywords: Mass spectroscopy

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/0003702904086489

Affiliations: 1: Department of Chemistry, The Ohio State University, 120 West 18th Avenue, Columbus, Ohio 43210 2: Department of Chemistry and Biochemistry, The Ohio State University, 120 West 18th Avenue, Columbus, Ohio 43210

Publication date: August 1, 1990

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more