Dual-Wavelength Photothermal Refraction Spectrometry for Small-Volume Samples

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

A novel dual-wavelength photothermal refraction spectrometer that is capable of simultaneously measuring photothermal refraction at two different wavelengths has been developed. In this instrument, the two excitation wavelengths were provided by an argon-ion (488 nm) and a He-Ne (632.8 nm) laser. These two pump beams were sequentially modulated at the same frequency by means of two mechanical choppers. The photothermal refraction signals produced by the sample absorption of these two pump beams were monitored by a probe beam which was derived from the same He-Ne laser by a beamsplitter. Compared to the single-wavelength techniques, this dual-wavelength apparatus has advantages that include its ability to provide fingerprints and identification of the analyte (as the ratio of the two signals at the two different excitation wavelengths) and to simultaneously determine two-component samples. With this apparatus, the detection limit for two-component samples containing oxohydroxy bis-(8-hydroxy quinoline)-vanadium and 1,2-diamino-anthraquinone in methanol with the use of 25-mW excitation beams modulated at 3.4 Hz is estimated to be 10−7 M. This corresponds to the absorbance of 10−6 for a probe volume of 10−11 L.

Keywords: Laser; Photothermal effect; Two-component mixtures

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/0003702894203886

Affiliations: Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233

Publication date: August 1, 1989

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more