Direct Use of Second Derivatives in Curve-Fitting Procedures

$29.00 plus tax (Refund Policy)

Buy Article:


Most curve-fitting procedures deal with an unknown, variable baseline by modeling it with a function involving a number of parameters. In view of the facts that (1) there is often no analytically relevant information in the baseline, and (2) there is usually no functional form known, a priori, for the baseline, we have chosen to eliminate it by means of the. second-derivative transformation. The resulting profile is deconvoluted by fitting it with the second derivative of the sum of an appropriate number of component curves. The utility of this procedure is demonstrated on simulated data with typical baselines and noise levels, and on real FT-IR data. Peak parameters (such as position, width, and area) obtained from this technique are comparable to those obtained by fitting the original spectrum with Lorentzian curves and a simple baseline. The major advantage of this procedure is the reduction in the number of parameters that must be optimized in the fitting method. Applications of the technique could eliminate contributions from other complex baseline profiles in the quantitative analysis of spectral components.

Keywords: Computer applications; chemometrics

Document Type: Research Article


Affiliations: 1: Center for Process Analytical Chemistry, Department of Chemistry, BG-10, University of Washington, Seattle, Washington 98195 2: Center for Bioengineering, WD-12, University of Washington, Seattle, Washington 98195

Publication date: July 1, 1989

More about this publication?
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more