Degradation of Polystyrene on Silver Substrates During Surface-Enhanced Raman Scattering

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Surface-enhanced Raman scattering (SERS) by films of polystyrene adsorbed onto silver island films was investigated. Films that were only a few tens of angstroms in thickness degraded rapidly during laser irradiation to form graphite-like species at the silver surface. However, no degradation was observed while Raman spectra of the solid polymer were obtained, indicating that the graphitization was probably induced by laser heating of the substrate and catalyzed by silver. For thin films of polystyrene, the rate of graphitization was high and was proportional to laser power. However, the degradation reaction was inhibited for thick films or for thin films overcoated with thick films of a second polymer. The Raman spectra were similar for all films thicker than approximately a hundred angstroms, even those overcoated with a thick film of a second polymer having a large Raman scattering cross section, indicating that most of the observed scattering originated from polymer molecules within a few tens of angstroms of the silver surface. It was concluded that SERS can be used to probe the molecular structure of polymer/metal interfaces without interference by scattering from the bulk of the polymer.

Keywords: Polystyrene; Raman spectroscopy; Surface analysis

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/0003702884430056

Affiliations: Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012

Publication date: September 1, 1988

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more