Radiative and Electrical Properties of a Center-Post Cathode Magnetron Glow Discharge Device

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Current-voltage characteristics and spatially resolved atomic emission data are used to describe the basic operation of a magnetron glow discharge plasma device. The low-pressure glow discharge lamp uses a center-post cathode and a concentric ring-shaped anode. A coaxial magnetic field of a few hundred Gauss is used to achieve magnetron operation where plasma electrons are trapped in closed paths which are concentric with the electrode structure. This results in dramatic changes in the radiative and electrical properties of the device. With constant current, lamp operating voltage may be reduced by more than a factor of two when the magnetic field is present. The effects of filler gas pressure and magnetic field strength on the current-voltage characteristics are presented. The presence of the magnetic field results in a radial contraction of the plasma. This contraction increases with increasing field strength and with decreasing pressure. Ion lines from the Ar filler gas are more affected by the field than are neutral-atom lines from the cathode material.

Keywords: Emission spectroscopy; Glow discharge excitation; Instrumentation; Magnetic field-plasma interaction

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/0003702884429346

Affiliations: Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109

Publication date: May 1, 1988

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more