Thermal Lens Absorption Measurements in Binary Liquid Mixtures Near the Consolute Critical Point

$29.00 plus tax (Refund Policy)

Buy Article:


Binary liquid mixtures near their consolute critical points are shown to possess desirable thermophysical properties for thermal lens absorption measurements. By use of a 2,6-dimethylpyridine/water mixture near critical composition and temperature, sensitivity was found to be enhanced relative to pure liquids by the Soret effect in which a concentration gradient is created between the two solvent components by thermally induced mass diffusion within the laser-excited temperature gradient. A 35-fold increase in sensitivity relative to a thermal expansion lens effect in pure water was obtained. A mechanism of phase separation unique to the critical point region known as spinodol decomposition was observed, as the sample temperature was driven above the critical point by laser excitation. This phenomenon was also found to be a potentially useful spectrophotometric technique for the thermooptical detection of small absorbances.

Keywords: Laser spectroscopy; Spectroscopic techniques; UV-visible spectroscopy

Document Type: Research Article


Affiliations: Department of Chemistry, University of Utah, Salt Lake City, Utah 84112

Publication date: July 1, 1986

More about this publication?
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more