If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

A Nanosecond Photon-Counting Fluorimetric System Using a Modified Multichannel Vernier Chronotron

$29.00 plus tax (Refund Policy)

Buy Article:


A new time-resolved photon-counting instrument with high data-gathering efficiency is described. The principle of operation is based on the measurement of the nanosecond temporal distribution of the emitted photon burst during the short duration of transient emission. The instrument is characterized by the unique capabilities of a modified vernier chronotron with plural coincidence circuits and serial-timing data memories, which serve as an efficient multichannel event-time analyzer of 1.5-ns time resolution. The data-gathering efficiency is improved by a factor of 20 or more in comparison with that of the conventional single-photon counting method. In regular operation, the time history of transient emission for the period of 144 ns is obtained; and for phenomena with longer duration, the time-scale expansion mode of operation is provided. To demonstrate the whole system performance, a fluorescence decay curve of 1-ppm quinine sulfate in 0.1-N H2SO4 is presented.

Keywords: Fluorescence lifetime measurement technique; Time resolved photon-counting instrument

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/0003702854249150

Affiliations: Department of Applied Physics, Osaka University, Yamada-oka, Suita, Osaka, Japan 565

Publication date: January 1, 1985

More about this publication?
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more