Skip to main content

Nanosecond Pulse Shaping of a Flashlamp-pumped Dye Laser

Buy Article:

$29.00 plus tax (Refund Policy)

Abstract:

Many studies of molecular processes have utilized flashlamp-pumped dye lasers as a source of wavelength tunable, moderate energy (1 mJ) microsecond optical pulses. The chief attribute of such devices is the ability to generate a high concentration of excited states. Unfortunately, the temporal width of the output limits most investigations to relatively slow events. This drawback could be circumvented by shortening the pulses using any of several schemes. However, most of the commercially available approaches, such as pulse slicing or Q-switching, suffer from inflexible pulse shaping or the inability to conserve and deliver the original laser energy. On the other hand, it has been shown that cavity-dumping can be used with a CW dye laser to both store the radiation and then deliver it in a variety of optical waveforms ranging from sawtooth to Gaussian shapes. In this note we wish to report the construction of a cavity-dumped flashlamp-pumped dye laser that is capable of generating a varied temporal output either of trains or single pulses with energies from 0.1 to 0.5 mJ.

Keywords: Lasers, pulsed dye; Optics; Techniques, spectroscopic; Time-resolved spectroscopy

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/000370276774456705

Affiliations: Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

Publication date: November 1, 1976

More about this publication?
sas/sas/1976/00000030/00000006/art00014
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more