Skip to main content

Relating Forest Attributes with Area- and Tree-Based Light Detection and Ranging Metrics for Western Oregon

Buy Article:

$21.50 plus tax (Refund Policy)

Three sets of linear models were developed to predict several forest attributes, using stand-level and single-tree remote sensing (STRS) light detection and ranging (LiDAR) metrics as predictor variables. The first used only area-level metrics (ALM) associated with first-return height distribution, percentage of cover, and canopy transparency. The second alternative included metrics of first-return LiDAR intensity. The third alternative used area-level variables derived from STRS LiDAR metrics. The ALM model for Lorey's height did not change with inclusion of intensity and yielded the best results in terms of both model fit (adjusted R2 = 0.93) and cross-validated relative root mean squared error (RRMSE = 8.1%). The ALM model for density (stems per hectare) had the poorest precision initially (RRMSE = 39.3%), but it improved dramatically (RRMSE = 27.2%) when intensity metrics were included. The resulting RRMSE values of the ALM models excluding intensity for basal area, quadratic mean diameter, cubic stem volume, and average crown width were 20.7, 19.9, 30.7, and 17.1%, respectively. The STRS model for Lorey's height showed a 3% improvement in RRMSE over the ALM models. The STRS basal area and density models significantly underperformed compared with the ALM models, with RRMSE values of 31.6 and 47.2%, respectively. The performance of STRS models for crown width, volume, and quadratic mean diameter was comparable to that of the ALM models.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: LiDAR intensity; area-level metrics; georeference; single-tree remote sensing

Document Type: Research Article

Publication date: 2010-07-01

More about this publication?
  • Each regional journal of applied forestry focuses on research, practice, and techniques targeted to foresters and allied professionals in specific regions of the United States and Canada. The Western Journal of Applied Forestry covers the western United States, including Alaska, and western Canada; WJAF will also consider manuscripts reporting research in northern Mexico that has potential application in the southwestern United States.
  • Membership Information
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more