Skip to main content

Predicting Crown Sizes and Diameter Distributions of Tanoak, Pacific Madrone, and Giant Chinkapin Sprout Clumps

Buy Article:

$29.50 plus tax (Refund Policy)

Crown size and stem diameters were measured on a total of 908 sprout clumps of tanoak (Lithocarpus densiflorus), Pacific madrone (Arbutus menziesii), and giant chinkapin (Castanopsis chrysophylla). The clumps, age 1 to 16 years, were located at 23 sites in southwestern Oregon and 20 sites in northwestern California. Regression equations were developed for predicting individual-clump crown size and stem-diameter distributions of dominant sprouts from the total basal area (dmĀ² at 1.37 m) in stems of the parent tree (PBA) and number of growing seasons since burning (AGE). Variables of PBA, AGE, and species in combination accounted for over 75% of the total variation in hardwood crown width and height and for 62% of the variation in sprout number. Variables describing site characteristics and competing vegetation abundance did not explain more than 2% of additional variation in hardwood crown size or sprout diameter distribution. On the basis of the Kolmogorov-Smirnoff test (α = 0.05), the Weibull function adequately described the reverse J-shaped distribution of stem diameters for individual sprout clumps. The goodness of fit for each of the predictive models for tanoak and madrone was verified with independent data. West. J. Appl. For. 7(4):103-108.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Journal Article

Affiliations: USDA Forest Service, Region 5, Timber Management, San Francisco, CA 94111

Publication date: 1992-10-01

More about this publication?
  • Each regional journal of applied forestry focuses on research, practice, and techniques targeted to foresters and allied professionals in specific regions of the United States and Canada. The Western Journal of Applied Forestry covers the western United States, including Alaska, and western Canada; WJAF will also consider manuscripts reporting research in northern Mexico that has potential application in the southwestern United States.
  • Membership Information
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more