Skip to main content

Tree Biomass Equations for Naturally Regenerated Shortleaf Pine

Buy Article:

$29.50 plus tax (Refund Policy)


Aboveground tree-level and branch-level biomass component equations were fitted by nonlinear seemingly unrelated regression, for even-aged naturally regenerated shortleaf pine (Pinus echinata Mill.) in southeastern Oklahoma. Data were obtained from 46- to 53-year-old trees growing in stands that had previously been thinned to densities ranging from 50% of full stocking to overstocked unthinned stands. Stand density affected some of the parameter estimates for trees growing in thinned stands versus unthinned stands. Equations based on dbh alone gave biomass estimates that were not significantly different from those obtained with equations based on dbh, height, and/or crown width. The fitted tree-level biomass component equations were additive in the sense that predictions for biomass components were constrained by the estimation process to sum to total tree biomass. These equations can be used to estimate aboveground tree or tree component biomass for naturally regenerated shortleaf pine in the dbh range of 7–40 cm in southeastern Oklahoma and have potential for application in other shortleaf pine growing areas.

Keywords: Pinus echinata Mill; additivity; nonlinear seemingly unrelated regression

Document Type: Research Article

Publication date: 2008-11-01

More about this publication?
  • Each regional journal of applied forestry focuses on research, practice, and techniques targeted to foresters and allied professionals in specific regions of the United States and Canada. The Southern Journal of Applied Forestry covers an area from Virginia and Kentucky south to as far west as Oklahoma and east Texas.
  • Membership Information
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more