Skip to main content

Smoothed Versus Unsmoothed LiDAR in a Double-Sample Forest Inventory

Buy Article:

$21.50 plus tax (Refund Policy)

Light detection and ranging (LiDAR) data at 0.5- and 1-m postings were used in a double-sample forest inventory on Louisiana State University's Lee Experimental Forest, Louisiana. Phase 2 plots were established with differential global positioning system (DGPS). Tree dbh (>4.5 in.) and two sample heights were measured on every 10th plot of the Phase 1 sample. Volume was computed for natural and planted pine and mixed hardwood species. LiDAR trees were selected with focal filter procedures from smoothed and unsmoothed LiDAR canopy surfaces. Dbh-height and ground-LiDAR height models were used to predict dbh from LiDAR height and compute Phase 2 estimates of ft2 basal area and ft3 volume. Phase 1 LiDAR estimates were computed by randomly assigning heights to species classes using the probability distribution from ground plots in each inventory strata. Phase 2 LiDAR estimates were computed by randomly assigning heights to species-product groups using a Monte Carlo simulation for each ground plot. Regression coefficients for Phase 2 estimates of ft2 and ft3 from the smoothed versus unsmoothed surfaces of high- and low-density LiDAR were computed by species group. Regression estimates for combined volume were partitioned by species-product distribution of Phase 2 volume. There was no statistical difference (α = 0.05) between smoothed versus unsmoothed for high- and low-density LiDAR on adjusted mean volume estimates (sampling errors of 9.52 versus 8.46% for high-density and 9.25 versus 7.65% for low-density LiDAR). South. J. Appl. For. 29(1):40–47.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: LiDAR; double-sample; environmental management; forest; forest management; forest resources; forestry; forestry research; forestry science; inventory; natural resource management; natural resources

Document Type: Regular Article

Affiliations: 1: Department of Forestry, Forest and Wildlife Research Center Mississippi State University Mississippi State MS 39762 Phone: (662) 325-2775;, Fax: (662) 325-8726, Email: [email protected] 2: Department of Forestry, Forest and Wildlife Research Center Mississippi State University Mississippi State MS 39762

Publication date: 2005-02-01

More about this publication?
  • Each regional journal of applied forestry focuses on research, practice, and techniques targeted to foresters and allied professionals in specific regions of the United States and Canada. The Southern Journal of Applied Forestry covers an area from Virginia and Kentucky south to as far west as Oklahoma and east Texas.
  • Membership Information
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more