Skip to main content

Implications of Diameter Caps on Multiple Forest Resource Responses in the Context of the Four Forests Restoration Initiative: Results from the Forest Vegetation Simulator

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

Meeting multiple resource objectives, such as increasing resilience to climate change, while simultaneously increasing watershed health, conserving biodiversity, protecting old-growth, reducing the risk of catastrophic wildfire, and promoting ecosystem health, is paramount to landscape restoration. Central to public land management efforts in the West is the widespread adoption of size-prohibited cutting of “large” trees, a limitation referred to as a “diameter cap.” In this study, we used the most commonly proposed prescription for the Four Forest Restoration Initiative in northern Arizona to explore the implications of diameter caps for multiple resource responses through the use of model simulations. We found that implementing progressively smaller caps in southwestern ponderosa pine may result in relatively similar live tree densities, canopy cover, and large snag densities but higher basal areas, mean tree size, torching indices, and scenic beauty with lower water yield and herbaceous production. When diameter cap scenarios are compared, tradeoffs exist, and no single metric is suited for overall scenario evaluation.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: forest management; ponderosa pine; restoration; size limits; treatment scenarios

Document Type: Research Article

Publication date: 01 March 2015

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more