Skip to main content

Modeling Forest Canopy Structure and Density by Combining Point Quadrat Sampling and Survival Analysis

Buy Article:

Your trusted access to this article has expired.

$21.50 plus tax (Refund Policy)

Point quadrat sampling has been used relatively infrequently for modeling canopy structure and density, primarily because of the large number of sample points needed to obtain accurate estimates. We address these limitations by showing how point quadrat data are a form of time-to-event data, analogous to what are commonly observed in biomedical studies. This equivalence allows for point quadrat data to be analyzed using existing survival analysis methods. We illustrate the usefulness of this relationship by analyzing data from a field study conducted in northeast Oregon. Within each of 60 forest plots, we obtained canopy-height measurements using a handheld laser rangefinder, and we used a survival-based regression model to estimate canopy profiles and leaf area indices via the Weibull hazard function. The resulting survival-based estimates of canopy density and structure appeared robust to sample size limitations, whereas the relatively small number of samples per plot led to an apparent underestimation of canopy density by the traditional point quadrat estimator. Overall, the incorporation of survival analysis methods and point quadrat sampling greatly increases the usefulness of this sampling method, resulting in an efficient tool for quickly assessing the structure of forest canopies.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: forest sampling; leaf area index; regression; variance estimation; vertical structure

Document Type: Research Article

Publication date: 2013-12-06

More about this publication?
  • Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management.
    Forest Science is published bimonthly in February, April, June, August, October, and December.

    2016 Impact Factor: 1.782 (Rank 17/64 in forestry)

    Average time from submission to first decision: 62.5 days*
    June 1, 2016 to Feb. 28, 2017

    Also published by SAF:
    Journal of Forestry
    Other SAF Publications
  • Submit a Paper
  • Membership Information
  • Author Guidelines
  • Podcasts
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more