If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Modeling Forest Canopy Structure and Density by Combining Point Quadrat Sampling and Survival Analysis

$29.50 plus tax (Refund Policy)

Buy Article:

Abstract:

Point quadrat sampling has been used relatively infrequently for modeling canopy structure and density, primarily because of the large number of sample points needed to obtain accurate estimates. We address these limitations by showing how point quadrat data are a form of time-to-event data, analogous to what are commonly observed in biomedical studies. This equivalence allows for point quadrat data to be analyzed using existing survival analysis methods. We illustrate the usefulness of this relationship by analyzing data from a field study conducted in northeast Oregon. Within each of 60 forest plots, we obtained canopy-height measurements using a handheld laser rangefinder, and we used a survival-based regression model to estimate canopy profiles and leaf area indices via the Weibull hazard function. The resulting survival-based estimates of canopy density and structure appeared robust to sample size limitations, whereas the relatively small number of samples per plot led to an apparent underestimation of canopy density by the traditional point quadrat estimator. Overall, the incorporation of survival analysis methods and point quadrat sampling greatly increases the usefulness of this sampling method, resulting in an efficient tool for quickly assessing the structure of forest canopies.

Keywords: forest sampling; leaf area index; regression; variance estimation; vertical structure

Document Type: Research Article

DOI: http://dx.doi.org/10.5849/forsci.12-086

Publication date: December 29, 2013

More about this publication?
  • Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management.
  • Membership Information
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more