Skip to main content

Volume and Error Variance Estimation Using Integrated Stem Taper Models

Buy Article:

$21.50 plus tax (Refund Policy)

In this study, we propose two volume and error variance estimators based on an integrated nonlinear mixed-effects stem taper model. The estimators rely either on a first- or a second-order Taylor series expansion. They were first tested through Monte Carlo simulations. The accuracy of the volume and error variance estimates was then tested against more than 1,000 observations. Empirical and nominal coverage of the confidence intervals were also compared under the assumption of a Gaussian distribution. For the volume estimators, results showed that the first-order estimator tends to slightly underestimate the volume, mainly because the stem taper model had random effects specified in a nonlinear manner. The second-order estimator was more accurate with neither under- nor overestimations of volume. For both the first- and the second-order variance estimators, the confidence intervals had empirical coverage that closely matches nominal coverage for probability levels >0.9. Although the proposed estimators require the stem taper model to predict the squared diameter of the cross section, they have the benefit of providing a tractable estimate of the variance. The covariances between different stem sections are quickly estimated because there is no need for repeated numerical integrations.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Monte Carlo simulations; Taylor series expansion; confidence intervals; error propagation; stem taper model; variance estimates; volume estimation

Document Type: Research Article

Publication date: 2013-06-24

More about this publication?
  • Important Notice: SAF's journals are now published through partnership with the Oxford University Press. Access to archived material will be available here on the Ingenta website until March 31, 2018. For new material, please access the journals via OUP's website. Note that access via Ingenta will be permanently discontinued after March 31, 2018. Members requiring support to access SAF's journals via OUP's site should contact SAF's membership department for assistance.

    Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management.
    Forest Science is published bimonthly in February, April, June, August, October, and December.

    2016 Impact Factor: 1.782 (Rank 17/64 in forestry)

    Average time from submission to first decision: 62.5 days*
    June 1, 2016 to Feb. 28, 2017

    Also published by SAF:
    Journal of Forestry
    Other SAF Publications
  • Submit a Paper
  • Membership Information
  • Author Guidelines
  • Podcasts
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more