Skip to main content

Deadwood Density of Five Boreal Tree Species in Relation to Field-Assigned Decay Class

Buy Article:

$21.50 plus tax (Refund Policy)

Aboveground deadwood, consisting of downed woody debris (DWD), snags, and stumps, is an important component of boreal forest ecosystem structure. Accurate deadwood density estimates are essential for evaluating ecosystem biomass and carbon stocks. The objective of this study was to examine the relationships between deadwood density, tree species, and decay status, identified in the field by morphological characteristics. We sampled DWD, snags, and stumps of trembling aspen (Populus tremuloides Michx.), paper birch (Betula papyrifera Marsh.), jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana [Mill.] B.S.P.), and balsam fir (Abies balsamea [L.] Mill.) in the boreal forest of central Canada. A total of 240 samples (99 DWD, 94 snags, and 47 stumps) were collected. Decay class and tree species explained >80% of the variation in wood density of all deadwood types. Wood density decreased consistently from the lowest to the highest decay class. Tree species identity was also important in determining the relationships between wood density and field-assigned decay class for snags and stumps, but not for DWD, probably because of the five-class system used for DWD, rather than the three-class system used for snags and stumps. These results indicate that decay class and tree species are adequate predictors of deadwood density.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: deadwood density; decay class; downed woody debris; snags; stumps

Document Type: Research Article

Publication date: 2013-06-24

More about this publication?
  • Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management.
    Forest Science is published bimonthly in February, April, June, August, October, and December.

    2016 Impact Factor: 1.782 (Rank 17/64 in forestry)

    Average time from submission to first decision: 62.5 days*
    June 1, 2016 to Feb. 28, 2017

    Also published by SAF:
    Journal of Forestry
    Other SAF Publications
  • Submit a Paper
  • Membership Information
  • Author Guidelines
  • Podcasts
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more