Skip to main content

Numerical Simulation of Crown Fire Hazard Immediately after Bark Beetle-Caused Mortality in Lodgepole Pine Forests

Buy Article:

$29.50 plus tax (Refund Policy)

Abstract:

Quantifying the effects of mountain pine beetle (MPB)-caused tree mortality on potential crown fire hazard has been challenging partly because of limitations in current operational fire behavior models. Such models are not capable of accounting for fuel heterogeneity resulting from an outbreak. Further, the coupled interactions between fuel, fire, and atmosphere are not modeled. To overcome these limitations, we used the Wildland-Urban Interface Fire Dynamics Simulator (WFDS) to investigate the influences of tree spatial arrangement and magnitude of MPB-caused tree mortality on simulated fire hazard. Field-collected, tree-level data from 11 sites were used to populate WFDS simulation domains representing a range of lodgepole pine forest structures for the postoutbreak period of time when dead needles are still present in the tree crowns. We found increases in the amount of crown fuel consumption and the intensity of crown fires as the percentage of MPB-caused tree mortality increased. In addition, we found complex interactions between the level of mortality, stand structure, and spatial arrangement of trees. These results suggest that preoutbreak forest structure and percent tree mortality influence crown fire behavior while dead needles are in the crown, and that the effect varies with spatial heterogeneity among trees.

Keywords: computational fluid dynamics; crown fire behavior; fire modeling; heterogeneous fuels; mountain pine beetle

Document Type: Research Article

DOI: https://doi.org/10.5849/forsci.10-137

Publication date: 2012-04-02

More about this publication?
  • Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management.
    Forest Science is published bimonthly in February, April, June, August, October, and December.

    2015 Impact Factor: 1.702
    Ranking: 16 of 66 in forestry

    Also published by SAF:
    Journal of Forestry
    Other SAF Publications
  • Submit a Paper
  • Membership Information
  • Author Guidelines
  • Podcasts
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more