Skip to main content

Modeling the Effects of Initial Spacing on Stand Basal Area Development of Loblolly Pine

Buy Article:

$29.50 plus tax (Refund Policy)

Abstract:

Several studies have reported that in loblolly pine stands with high initial density, basal area declines after reaching maximum carrying capacity. This behavior is not reproduced by most basal area development models because the functions used are sigmoid and nondecreasing, tending toward an asymptote. We used a combined exponential and power function to model the impact of initial density on the basal area development of loblolly pine in a spacing trial. The combined exponential and power function is sufficiently flexible to describe both the asymptotic behavior of the wider initial spacing plots and the decrease in basal area after culmination of the closer spacings. We modified the original function to account for the time lag between stand establishment (age = 0) and basal area establishment (age > 0), by allowing the origin of the function to be different than age = 0. Two final models are presented: a model fitted using the population-average (PA) approach and a model fitted using the mixed-effects (ME) approach. At the fixed-effects level, the PA and ME models are not equivalent, and, therefore, the appropriate model should be selected according to the availability of previous data and the objectives of the prediction. If previous observations are available, they can be used to improve the predictions using the ME model.

Keywords: Pinus taeda; growth; initial density; stand dynamics; yield

Document Type: Research Article

DOI: https://doi.org/10.5849/forsci.10-074

Publication date: 2012-04-02

More about this publication?
  • Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management.
    Forest Science is published bimonthly in February, April, June, August, October, and December.

    2015 Impact Factor: 1.702
    Ranking: 16 of 66 in forestry

    Also published by SAF:
    Journal of Forestry
    Other SAF Publications
  • Submit a Paper
  • Membership Information
  • Author Guidelines
  • Podcasts
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more