Skip to main content

Late-Successional Biomass Development in Northern Hardwood-Conifer Forests of the Northeastern United States

Buy Article:

$29.50 plus tax (Refund Policy)

Abstract:

Managing the contribution of forest ecosystems to global carbon cycles requires accurate predictions of biomass dynamics in relation to stand development. Our study evaluated competing hypotheses regarding late-successional biomass dynamics in northern hardwood-conifer forests using a data set spanning the northeastern United States, including 48 mature and 46 old-growth stands. Continuous data on dominant tree ages were available for 29 of these and were used as an indicator of stand development. Aboveground live biomass was significantly (P < 0.001) different between mature (195 Mg/ha) and old-growth (266 Mg/ha) sites. Aboveground biomass was positively (P < 0.001) and logarithmically correlated with dominant tree age; this held for live trees (r 2 = 0.52), standing dead trees (r 2 = 0.36), total trees (r 2 = 0.63), and downed woody debris (r 2 = 0.24). In a Classification and Regression Tree analysis, stand age class was the strongest predictor of biomass, but ecoregion and percent conifer accounted for ∼25‐33% of intraregional variability. Biomass approached maximum values in stands with dominant tree ages of ∼350‐400 years. Our results support the hypothesis that aboveground biomass can accumulate very late into succession in northern hardwood-conifer forests, recognizing that early declines are also possible in secondary forests as reported previously. Empirical studies suggest a high degree of variability in biomass development pathways and these may differ from theoretical predictions. Primary forest systems, especially those prone to partial disturbances, may have different biomass dynamics compared with those of secondary forests. These differences have important implications for both the quantity and temporal dynamics of carbon storage in old-growth and recovering secondary forests.

Keywords: aboveground biomass; carbon cycles; northern hardwoods; old-growth; stand development

Document Type: Research Article

Publication date: 2011-12-01

More about this publication?
  • Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management.
    Forest Science is published bimonthly in February, April, June, August, October, and December.

    2015 Impact Factor: 1.702
    Ranking: 16 of 66 in forestry

    Also published by SAF:
    Journal of Forestry
    Other SAF Publications
  • Submit a Paper
  • Membership Information
  • Author Guidelines
  • Podcasts
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more