Toward Efficient Management of Large Fires: A Mixed Integer Programming Model and Two Iterative Approaches

$29.50 plus tax (Refund Policy)

Buy Article:


In this study, we developed an optimization model and two iterative approaches to improve the efficiency of large fire management. This model allocates suppression effort across time and space to minimize fire loss within a defined duration. It departs from previous research by replacing simplified fire containment rules with progress-based fire loss control. This is accomplished by extending the minimum travel time algorithm to build a large fire suppression model. Mixed integer programming is used to integrate spatial information such as fire behavior, firefighter safety, and values at risk to guide large fire suppression. The concern of time-specific suppression allocation is modeled through two iterative approaches using different logical procedures. Test cases demonstrate how this model assembles spatial data to support suppression decisions for one fire or multiple simultaneous fires. Suppression is also scheduled across 30 randomly simulated fires in Sequoia and Kings Canyon National Parks. Results demonstrate that suppression delay can significantly increase fire loss. Simulation results show that iterative approach A is more efficient in distributing suppression effort into short time periods.

Keywords: fire loss; fire suppression; minimum travel time; optimization

Document Type: Research Article

Publication date: October 1, 2011

More about this publication?
  • Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management.
  • Membership Information
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more