Estimating a Multilevel Dominant Height‐Age Model from Nested Data with Generalized Errors

$29.50 plus tax (Refund Policy)

Buy Article:

Abstract:

A dominant height‐age model was developed following a multilevel nonlinear mixed-model approach. Random effects were modeled at the plot and the tree levels, with two random parameters at each level. In addition to the random effects, a variance function was used to model heteroscedasticity, and various covariance structures were evaluated to account for residual autocorrelation. A new covariance structure, the modified spatial power structure, is proposed. This new structure was found to provide the best fit to the model. Although residual autocorrelations were still not completely removed by this structure, they were substantially reduced. Model validation results using an independent data set confirmed that the final model with the modified spatial power structure produced more accurate and precise dominant height predictions. This was true for both expansion methods, and the empirical best linear unbiased predictor (EBLUP) expansion showed better results than the ZERO expansion. The model with the modified spatial power structure fitted by the EBLUP expansion method, therefore, was chosen as the preferred model for making tree-specific, dominant height predictions. The advantages and relevance of the multilevel nonlinear mixed-model approach for forest growth and yield modeling are discussed.
More about this publication?
  • Membership Information
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more