If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Challenges to Estimating Tree Height via LiDAR in Closed-Canopy Forests: A Parable from Western Oregon

$29.50 plus tax (Refund Policy)

Buy Article:

Abstract:

We examine the accuracy of tree height estimates obtained via light detection and ranging (LiDAR) in a temperate rainforest characterized by complex terrain, steep slopes, and high canopy cover. The evaluation was based on precise top and base locations for >1,000 trees in 45 plots distributed across three forest types, a dense network of ground elevation recordings obtained with survey grade equipment, and LiDAR data from high return density acquisitions at leaf-on and leaf-off conditions. Overall, LiDAR error exceeded 10% of tree height for 60% of the trees and 43% of the plots at leaf-on and 55% of the trees and 38% of the plots at leaf-off. Total error was decomposed into contributions from errors in the estimates of tree top height, ground elevation model, and tree lean, and the relationships between those errors and stand- and site-level variables were explored. The magnitude of tree height error was much higher than those documented in other studies. These findings, coupled with observations that indicate suboptimal performance of standard algorithms for data preprocessing, suggest that obtaining accurate estimates of tree height via LiDAR in conditions similar to those in the US Pacific Northwest may require substantial investments in laser analysis techniques research and reevaluation of laser data acquisition specifications.

Keywords: Pacific Northwest; airborne laser scanning; calibration; terrain modeling; tree leaning

Document Type: Research Article

Publication date: April 1, 2010

More about this publication?
  • Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management.
  • Membership Information
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more