If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Predicted Fire Behavior in Selected Mountain Pine Beetle–Infested Lodgepole Pine

$29.50 plus tax (Refund Policy)

Buy Article:

Abstract:

Using custom fuel models developed for use with Rothermel's surface fire spread model, we predicted and compared fire behavior in lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) stands with endemic, current epidemic, and postepidemic mountain pine beetle (Dendroctonus ponderosae Hopkins) populations using standardized sets of wind speeds and fuel moistures. We also compared our fire behavior results with those from standard fuel models. Results indicated that for surface fires both rates of fire spread and fireline intensities were higher in the current epidemic stands than in the endemic stands owing to increases in the amounts of fine surface fuels. In the postepidemic stands, rates of surface fire spread and fireline intensities were higher than in the endemic stands owing to decreased vegetative sheltering and its effect on mid-flame wind speed. Total heat release of surface fires, including postfrontal combustion, was also higher in the postepidemic stands owing to heavy accumulations of large diameter fuels. Crown fires were more likely to initiate in the postepidemic stands owing to greater fireline intensities and lower crown base heights. However, the critical rate of spread needed to sustain an active crown fire was higher in the postepidemic stands owing to decreased aerial fuel continuity. We suggest here that crown fire initiation in the current epidemic stands was also greater because of an abundance of dead aerial fuels; although this relationship is unclear.

Keywords: fire behavior; fuel models; fuels management; mountain pine beetle

Document Type: Research Article

Publication date: December 1, 2007

More about this publication?
  • Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management.
  • Membership Information
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more