Skip to main content

Modeling Tree Recruitment with Zero-Inflated Models: The Example of Hardwood Stands in Southern Québec, Canada

Buy Article:

$21.50 plus tax (Refund Policy)

In recruitment modeling, the response variable is a count and its distribution is often characterized by an excess number of zeros. As a result, standard distributions of probabilities, such as Poisson, are inappropriate. A common approach in forestry consists of using two-part conditional models. These models have two distinct components aimed to predicting the occurrence and abundance of recruitment, respectively. For such data, zero-inflated models might provide a more adequate framework by combining the two components into a joint distribution of probabilities. In this article, a conditional model is compared with two different zero-inflated models, namely, a zero-inflated Poisson (ZIP) and a zero-inflated discrete Weibull (ZIdiW) model. The three models were calibrated using a data set provided by permanent sample plots located in hardwood stands. Parsimony criteria (the Akaike information criterion and the Bayesian information criterion) and diagnostic plots were used to perform the comparison. The results show that the ZIdiW model has the best fit. The flexibility of the Weibull function and the possibility of obtaining a more parsimonious model are two advantages related to the use of a ZIdiW model in recruitment modeling.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: Poisson distribution; Weibull function; diagnostic plots; fit statistics; hardwood stand; logistic regression; recruitment modeling; zero-inflated model

Document Type: Research Article

Publication date: 2007-08-01

More about this publication?
  • Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management.
    Forest Science is published bimonthly in February, April, June, August, October, and December.

    2016 Impact Factor: 1.782 (Rank 17/64 in forestry)

    Average time from submission to first decision: 62.5 days*
    June 1, 2016 to Feb. 28, 2017

    Also published by SAF:
    Journal of Forestry
    Other SAF Publications
  • Submit a Paper
  • Membership Information
  • Author Guidelines
  • Podcasts
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more