Influence of Fusing Lidar and Multispectral Imagery on Remotely Sensed Estimates of Stand Density and Mean Tree Height in a Managed Loblolly Pine Plantation

$29.50 plus tax (Refund Policy)

Buy Article:

Abstract:



Stereo aerial photography has long been used to measure tree density and height photogrammetrically. Recent attempts have been made to locate and measure trees automatically in high-resolution digital imagery. This study used small-footprint lidar (1.057 ┬Ám, 1 mrad divergence, 0.67 m footprint) and high-resolution (0.61 m) multispectral (550, 675, 700, and 800 nm) data sets to estimate stem counts and tree heights in 15-yr-old loblolly pine stands. A data fusion process was used to combine the datasets. Tree identification accuracy and mean height estimation derived from the separate and fused data sets were compared against field data.

Tree identification was more accurate using spectral data (78.6% and 92.4%) than lidar data (64.7% and 87.3%) within the two planting densities, respectively. The fused dataset improved accuracy of tree identification over the single-dataset approaches (83.5% and 94.8%). Plot-level mean height of lidar-located trees provided the best estimates of mean field height (average difference = 0.15 m). Missed trees for all methods were shorter than mean field height by up to 3.03 m (fused data). These results indicate fusion of spectral and lidar data will likely improve estimates of mean tree height and stem density. Increased lidar posting density is identified as a key factor to improve tree recognition and measurement. FOR. SCI.49(3):457–466.

Keywords: ALTMS; Inventory; environmental management; forest; forest management; forest resources; forestry; forestry research; forestry science; infrared; natural resource management; natural resources; sensor fusion

Document Type: Miscellaneous

Affiliations: 1: Research Assistant Department of Forestry, Forest and Wildlife Research Center, Mississippi State University, Box 9681 Mississippi State, MS, 39762, Phone: (662) 325-3540; Fax: (662) 325-8726 jmccombs@rs.cfr.msstate.edu. 2: Associate Professor Department of Forestry, Forest and Wildlife Research Center, Mississippi State University, Box 9681 Mississippi State, MS, 39762, sroberts@cfr.msstate.edu. 3: Associate Professor Department of Forestry, Forest and Wildlife Research Center, Mississippi State University, Box 9681 Mississippi State, MS, 39762, dle@rs.cfr.msstate.edu.

Publication date: June 1, 2003

More about this publication?
  • Membership Information
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more