Effect of Western Spruce Budworm Defoliation on the Physiology and Growth of Potted Douglas-Fir Seedlings

$29.50 plus tax (Refund Policy)

Buy Article:


Interactions between effects of insect defoliators on tree physiology and growth and soil nutrient and water availability are poorly understood. We addressed whether the western spruce budworm influences nutrient and water relations, ectomycorrhizae, leaf gas exchange, and growth of Douglas-fir seedlings under different environmental conditions. Four-year-old, potted seedlings were grown in two soil types (basalt-derived, limestone-derived) with two levels of soil moisture (high, low) and were subjected to three levels of budworm defoliation (none, moderate, heavy) and two levels of frass and litter produced by budworm feeding (with, without) over 2 yr in a greenhouse environment. Defoliation, soil moisture, and soil type influenced allocation of seedling biomass to leaves, stems, and roots. The addition of frass and litter had no effect on any measured soil or tree characteristic. Interactions between defoliation and other experimental factors were not important except for the defoliation x soil moisture interaction where heavy defoliation reduced the negative effects of low soil moisture on seedling predawn water potential, net photosynthetic rate, and stomatal conductance. Heavily defoliated seedlings had less biomass, higher foliar concentrations of N, Ca, and Mg, less ectomycorrhizae, and higher net photosynthetic rate and stomatal conductance compared with nondefoliated seedlings. For. Sci. 45(2):280-291.

Keywords: Choristoneura occidentalis; Pseudotsuga menziesii; mycorrhizae; nutrients; photosynthesis; water relations

Document Type: Journal Article

Affiliations: Rocky Mountain Research Station, 2500 S. Pine Knoll Drive, Flagstaff, AZ 86001--Phone: (520) 556-2105

Publication date: May 1, 1999

More about this publication?
  • Membership Information
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more