Skip to main content

Effect of Western Spruce Budworm Defoliation on the Physiology and Growth of Potted Douglas-Fir Seedlings

Buy Article:

$29.50 plus tax (Refund Policy)


Interactions between effects of insect defoliators on tree physiology and growth and soil nutrient and water availability are poorly understood. We addressed whether the western spruce budworm influences nutrient and water relations, ectomycorrhizae, leaf gas exchange, and growth of Douglas-fir seedlings under different environmental conditions. Four-year-old, potted seedlings were grown in two soil types (basalt-derived, limestone-derived) with two levels of soil moisture (high, low) and were subjected to three levels of budworm defoliation (none, moderate, heavy) and two levels of frass and litter produced by budworm feeding (with, without) over 2 yr in a greenhouse environment. Defoliation, soil moisture, and soil type influenced allocation of seedling biomass to leaves, stems, and roots. The addition of frass and litter had no effect on any measured soil or tree characteristic. Interactions between defoliation and other experimental factors were not important except for the defoliation x soil moisture interaction where heavy defoliation reduced the negative effects of low soil moisture on seedling predawn water potential, net photosynthetic rate, and stomatal conductance. Heavily defoliated seedlings had less biomass, higher foliar concentrations of N, Ca, and Mg, less ectomycorrhizae, and higher net photosynthetic rate and stomatal conductance compared with nondefoliated seedlings. For. Sci. 45(2):280-291.

Keywords: Choristoneura occidentalis; Pseudotsuga menziesii; mycorrhizae; nutrients; photosynthesis; water relations

Document Type: Journal Article

Affiliations: Rocky Mountain Research Station, 2500 S. Pine Knoll Drive, Flagstaff, AZ 86001--Phone: (520) 556-2105

Publication date: 1999-05-01

More about this publication?
  • Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management.
    Forest Science is published bimonthly in February, April, June, August, October, and December.

    2015 Impact Factor: 1.702
    Ranking: 16 of 66 in forestry

    Also published by SAF:
    Journal of Forestry
    Other SAF Publications
  • Submit a Paper
  • Membership Information
  • Author Guidelines
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more