Skip to main content

Diel and Seasonal Patterns of Leaf Gas Exchange and Xylem Water Potentials of Different-Sized Prunus serotina Ehrh. Trees

Buy Article:

$21.50 plus tax (Refund Policy)

Leaf gas exchange and xylem water potentials were measured in the field throughout the 1994 growing season on leaves in the upper crown of seedling, sapling, and forest canopy black cherry trees (Prunus serotina Ehrh.) in northcentral Pennsylvania. Rates of gas exchange and xylem water potentials generally decreased with increasing tree size. Rates of dark respiration also decreased with increasing tree size. Differences among tree size classes were consistent throughout the growing season for xylem water potentials, but not for leaf gas exchange measurements. In May and June, seedling net photosynthesis and stomatal conductance were approximately 2 x that of larger trees, but their values tended to be similar to or lower than those of larger trees in July and August. Averaged over the entire season, seedlings had higher leaf gas exchange rates than saplings, which had higher rates than canopy trees. Regardless of tree size, stomatal conductance and net photosynthetic rates reached a maximum near mid to late morning. Stomatal conductance and net photosynthesis decreased steadily during the afternoon for larger trees, but seedling rates remained high until late afternoon. Seedlings consistently had the highest predawn and midday xylem water potentials and leaf-to-air water vapor pressure deficits, while canopy trees had the lowest. The results of this study indicate that tree size is an important factor influencing foliar gas exchange and water relations. For. Sci. 42(3):359-365.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Black cherry; hydraulic resistance; net photosynthesis; stomatal conductance; vapor pressure deficit

Document Type: Journal Article

Affiliations: Department of Plant Pathology, Pennsylvania State University

Publication date: 1996-08-01

More about this publication?
  • Important Notice: SAF's journals are now published through partnership with the Oxford University Press. Access to archived material will be available here on the Ingenta website until March 31, 2018. For new material, please access the journals via OUP's website. Note that access via Ingenta will be permanently discontinued after March 31, 2018. Members requiring support to access SAF's journals via OUP's site should contact SAF's membership department for assistance.

    Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management.
    Forest Science is published bimonthly in February, April, June, August, October, and December.

    2016 Impact Factor: 1.782 (Rank 17/64 in forestry)

    Average time from submission to first decision: 62.5 days*
    June 1, 2016 to Feb. 28, 2017

    Also published by SAF:
    Journal of Forestry
    Other SAF Publications
  • Submit a Paper
  • Membership Information
  • Author Guidelines
  • Podcasts
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more