Skip to main content

Characterizing Spatial Patterns of Trees Using Stem-Mapped Data

Buy Article:

$29.50 plus tax (Refund Policy)


Procedures for stem-mapping trees on fixed area plots are described. Two statistical procedures for analyzing spatial patterns of the completely mapped tree data are presented. These procedures, known as nearest neighbor analysis and Ripley's K(d) function, consider the cumulative distributions of distances between trees, compared to a distance distribution for a point pattern generated by a random process. Nearest neighbor uses tree-to-nearest-tree distances, and Ripley's K(d) considers distances between all pairs of trees. Both procedures include edge correction schemes for trees near plot boundaries. The two analyses were applied to stem-mapped data from several old-growth study plots to investigate spatial interactions within and between groups of canopy trees. Patterns for trees in different mortality, size, and competitive classes were analyzed separately. Results showed that between-tree competitive interactions drive forest patterns from clustering toward regularity. There was also evidence that canopy gaps are an important mechanism in the regeneration process. The examples illustrate how spatial pattern analysis can be useful in describing and interpreting complicated development processes that result from competitive interactions between individual trees. For. Sci. 39(4):756-775.

Keywords: Monte Carlo confidence envelopes; Nearest neighbor analysis; Ripley's K(d) analysis; old growth

Document Type: Journal Article

Affiliations: Research Forester, Intermountain Research Station, USDA Forest Service, Moscow, ID 83843

Publication date: 1993-11-01

More about this publication?
  • Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management.
    Forest Science is published bimonthly in February, April, June, August, October, and December.

    2016 Impact Factor: 1.782 (Rank 17/64 in forestry)

    Average time from submission to first decision: 62.5 days*
    June 1, 2016 to Feb. 28, 2017

    Also published by SAF:
    Journal of Forestry
    Other SAF Publications
  • Submit a Paper
  • Membership Information
  • Author Guidelines
  • Podcasts
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more