If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Interactive Role of Elevated CO2, Nutrient Limitations, and Water Stress in the Growth Responses of Red Spruce Seedlings

$29.50 plus tax (Refund Policy)

Buy Article:

Abstract:

Red spruce (Picea rubens Sarg.) seedlings were grown from seed for 5 mo in ambient (362 ppm) or elevated (711 ppm) CO2 to determine the potential effect of an increase in global CO2 concentration on seedling growth and establishment. CO2 exposure treatments were crossed with two levels of soil fertility and water stress treatments to determine if seedling dry weight, size, and fixed growth responses to elevated CO2 depended on nutrient and water supply. Seedling dry weight and size responses to elevated CO2 at 5 mo did not depend on nutrient and water supply. Seedlings grown in both soil fertility treatments and water stress treatments responded similarly to CO2 treatment. Water stress and CO2 treatments did have an interactive influence on the fixed growth potential of the terminal leader. Leaf weight, leaf area, and height of the terminal leader of water-stressed seedlings were greater in seedlings exposed to elevated CO2 during budset than seedlings exposed to ambient CO2. Total new fixed growth (lateral plus terminal) and total terminal fixed growth (leaf plus stem) were greater in seedlings that formed shoot primordia in elevated CO2 than in ambient CO2. Red spruce seedlings grown in elevated CO2 for 5 mo had greater stem diameter, height, branching density, leaf weight, root weight, stem weight, total weight, and mean relative growth rate (RGR) from 3 to 5 mo than seedlings grown in ambient CO2. Red spruce seedling responses to elevated CO2 suggest that seedling establishment in natural environments may be enhanced when ambient CO2 concentrations rise even if water and nutrient availabilities are limited. FOR. SCI. 39(2):348-358.

Keywords: Picea rubens; fixed growth

Document Type: Journal Article

Affiliations: Associate Professor, Department of Forestry, Virginia Tech, Blacksburg, VA 24061-0324

Publication date: May 1, 1993

More about this publication?
  • Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management.
  • Membership Information
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more