Skip to main content

Biomass Estimation Methods for Tropical Forests with Applications to Forest Inventory Data

Buy Article:

$29.50 plus tax (Refund Policy)


This paper contains a strategy for estimating total aboveground biomass of tropical forests. We developed regression equations to estimate aboveground biomass of individual trees as a function of diameter at breast height, total height, wood density, and Holdridge life zone (sensu Holdridge 1967). The regressions are applied to some 5,300 trees from 43 independent sample plots, and 101 stand tables from large-scale forest inventories in four countries, to estimate commercial and total aboveground biomass per unit area by forest type, and to estimate expansion factors defined as the ratio of aboveground to commercial biomass. The quadratic stand diameter (QSD, i.e., the diameter of a tree of average basal area) in a given forest stand influences the magnitude of the expansion factor. Stands of small trees have large expansion factors (up to 6.4), and as QSD increases, the expansion factor decreases to a constant value (about 1.75). For undisturbed forests in moist, moist transition to dry, and dry life zones respectively, the expansion factors for total aboveground biomass were 1.74, 1.95, and 1.57 respectively. For undisturbed, logged, and nonproductive forest categories used by the FAO to report global commercial wood volume data, we estimated expansion factors of 1.75, 1.90, and 2.00 respectively. Applying these factors to FAO data results in a 28 to 47% increase in previous volume-derived estimates of tropical forest biomass. However, estimates of tropical forest biomass based on small destructive samples continue to be high relative to estimates based on volume data. For. Sci. 35(4):881-902.

Keywords: Global carbon cycle; expansion factors; ratio estimators; regression analysis

Document Type: Journal Article

Affiliations: Institute of Tropical Forestry, USDA Forest Service, Southern Forest Experiment Station, Call Box 25000, Río Piedras, Puerto Rico 00928

Publication date: 1989-12-01

More about this publication?
  • Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management.
    Forest Science is published bimonthly in February, April, June, August, October, and December.

    2015 Impact Factor: 1.702
    Ranking: 16 of 66 in forestry

    Average time from submission to first decision: 62.5 days*
    June 1, 2016 to Feb. 28, 2017

    Also published by SAF:
    Journal of Forestry
    Other SAF Publications
  • Submit a Paper
  • Membership Information
  • Author Guidelines
  • Podcasts
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more